An investigation of non-steady-state algal growth. II. Mathematical modelling of co-nutrient-limited algal growth

نویسندگان

  • K. Davidson
  • W. S. C. Gurney
چکیده

The ability of mathematical models to simulate competition for nutrients between three algal species, the diatom Thalassiosira pseudonana, a marine raphidophyte Heterosigma carterae and the dinoflagellate Alexandrium minutum, was investigated. Transient growth models were parameterized and tested using a number of closely controlled laboratory data sets including batch monocultures, batch competition experiments and semi-continuous culture competition experiments. The cell quota model of algal growth was found to be adequate to simulate growth of both the raphidophyte and the dinoflagellate. Batch monoculture data for diatom growth obtained under either nitrogen (N) or silicon (Si) limitation could also be simulated with a quota-style model, which in this case included feedback inhibition of nutrient uptake. However, to simulate both batch and semicontinuous culture experiments (and competition between the species), it was necessary to consider diatom Si–N metabolism. A model was derived which contains a representation of both intracellular N and Si, and of the interaction of these nutrients within the cell. The model used a co-nutrient limitation based on the perceived functional and structural role of N and Si, respectively, within the cell. Simulations indicated that models capable of adequately representing monoculture growth in batch culture may produce erroneous results when incorporated into models of competition. The conutrient model is a first step to producing tractable algal growth models which will represent multiple nutrient stress in transient growth conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of the Self-Shading Effect on Algal Vertical Distribution in Natural Waters*

Self-shading of light by algae growing in a column of water plays an important:role in the dynamics of algal blooms. Thus without self-shading the algal concentration would increase more rapidly, making the nutrient limitation too strong. Apart from the practical importance of self-shading, its inherent nonlinearity in the growth dynamics leads to an interesting mathematical problem, which warr...

متن کامل

Quantitative description of steady state, nutrient-saturated algal growth, including adaptation

Steady state, nutrient-saturated phytoplankton growth can be quantitatively described by four equations: an empirical equation relating growth rate ~1, to absorbed irradiance [; a different equation relating b and 4 derived from the empirical equation relating instantaneous rate of gross photosynthesis to irradiance; an empirical equation relating the respiratory rate constant R, to growth rate...

متن کامل

Influence of bacteria on phytoplankton cell mortality with phosphorus or nitrogen as the algal-growth-limiting nutrient

The effects of bacteria on phytoplankton mortality were studied with phosphorus or nitrogen as the algal-growth-limiting nutrients. Experiments were performed with the &atom Ditylum brightwellii using batch cultures, steady state continuous cultures and batch-mode cultures which were starved for the limiting nutrient after being preconditioned in a chemostat. With phosphorus limiting algal grow...

متن کامل

Bacterial Associates Modify Growth Dynamics of the Dinoflagellate Gymnodinium catenatum

Marine phytoplankton cells grow in close association with a complex microbial associate community known to affect the growth, behavior, and physiology of the algal host. The relative scale and importance these effects compared to other major factors governing algal cell growth remain unclear. Using algal-bacteria co-culture models based on the toxic dinoflagellate Gymnodinium catenatum, we test...

متن کامل

A stoichiometrically derived algal growth model and its global analysis.

Organisms are composed of multiple chemical elements such as carbon, nitrogen, and phosphorus. The scarcity of any of these elements can severely restrict organismal and population growth. However, many trophic interaction models only consider carbon limitation via energy flow. In this paper, we construct an algal growth model with the explicit incorporation of light and nutrient availability t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999